Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Иркутский национальный исследовательский технический университет»

Институт информационных технологий и анализа данных

Центр компетенций по кибербезопасности

УТВЕРЖДАЮ:

Директор института ИТ и АД
/ А.С. Говорков
28 марта 2022 г.

Фонд оценочных средств

Инженерия киберфизических систем

10.04.01 Информационная безопасность

Безопасность киберфизических систем

Форма обучения: Очная

Составитель программы:

Маринов А.А. (28 "

марта 20 22 г.

Год набора - 2022

Иркутск 2022

1. Показатели и критерии оценивания компетенций на этапах их формирования

Индикатор	Показатель	Критерий	Средства
достижения	оценивания	оценивания	(методы)
компетенции	оценивания	оценирания	оценивания
компетенции			промежуточной
			аттестации
	Знать	Способен описать	Устное
	инструментарий для		-
	графического		
	моделирования и	целесообразность	теоретическим
	архитектурного	внедрения результатов	вопросам
	проектирования,	по вводу в	и/или
	реализующий	эксплуатацию систем и	выполнение
	рекомендации и	средств обеспечения	практических
	принципы метода	информационной	заданий
	arcadia.	безопасности	
	Уметь провести		
	моделирование		
	архитектуры		
	(arcadia/capella)		
	будущей системы и		
	на ранних этапах отследить		
ПК-4.1 Владеет	возможность		
методами	выполнения		
организации	функциональных и		
выполнения работ	нефункциональных		
по вводу в	требований.		
эксплуатацию систем и средств	Владеть методом		
обеспечения	arcadia, на практике		
информационной	показать выполнение		
безопасности	(последовательность		
	действий)		
	следующих шагов:		
	– определение потребностей		
	пользователя; –		
	формализация		
	требований к		
	системе; –		
	разработка		
	логической		
	архитектуры; –		
	разработка		
	физической		
	архитектуры; –		
	формализация к		
	треоований к компонентам.		
ПК-3.3 Способен	Знать маршруты	Способен	Устное
предлагать в	проектирования и	продемонстрировать	собеседование по
рамках проектно-	подходы к	специализированные	теоретическим
конструкторской	проектированию	знания в рамках	вопросам и
деятельности	программного	проектно-	индивидуальные
системные	обеспечения и	конструкторской	•
решения	систем	деятельности: решение	практические
инженерных задач	произвольного	инженерных задач в	задания.
в различных	назначения.	информационных	

информационных	Уметь применять на	технологиях.	
технологий.	практике структура		
14	«альф» и «суб-		
	альф», которая		
	позволяет essence		
	соответствовать ISO		
	15288, в частности		
	v-диаграмме.		
	Владеть методами		
	архитектурное		
	описания рабочего		
	продукта, в		
	частности у-		
	диаграмме (ISO		
	15288) , B		
	следующем порядке		
	согласовать		
	требования: –		
	требования		
	предметной области;		
	– требования к		
	системе; –		
	требования к		
	отдельным		
	элементам; –		
	запуска процесса		
	разработки (в		
	контексте		
	киберфизических		
	систем); –		
	верификации		
	элемента системы, а		
	в конце самой		
	системы и проверки		
	на выполнение всех		
	требований		
	(требований		
	заказчика).		
ПК-1.3 Собирает и	Знать: как	Способен	Устное
систематизирует	использовать и	продемонстрировать	
научно-	развивать передовые	специализированные	собеседование по
техническую	достижения в	знания в области	теоретическим
информацию по	сфере обеспечения	систематизации научно-	вопросам и
теме исследования,	защиты информации	технической	индивидуальные
определяет методы	В	информацию по теме	практические
и средства решения	инфокоммуникацион	исследования:	задания.
задачи, планирует	ных системах.	определение методов и	
практическое	Уметь:	средств решения задач,	
проведение	эффективного	практическое проведение	
научных	применения	научных исследований и	
исследований и	результатов научно-	технических разработок.	
технических	исследовательских и	Termin termin puspuootok.	
разработок	опытно-		
puspusoron	конструкторских		
	работ в области		
	защиты информации.		
	Владеть:		
	информацией о		
	современных		
	СОБРОМОННЫХ		

	тенденциях в области разработки систем защиты на основе российских и		
	международных		
ПК-1.6 Способен	2	Способен	Vстное
ПК-1.6 Способен работать с механическими и программными компонентами; изготовить и запрограммировать реальную киберфизических систему	Внать основные сегменты деятельности, которые непосредственно относятся к созданию вычислительной компоненты КФС: — проектирование систем на кристалле (включая технологии азіс, азір, fpga); — проектирование специализированных контроллеров и всс на их основе; — проектирование систем автоматики на базе готовых программируемых логических контроллеров, scadacистем, технологий информационных систем. Уметь эффективно решать вопросы ограниченного числа типовых проектных ик-платформ для множества разнообразных задач, среди которых: — нехватка вычислительной мощности; — большое энергопотребление; — сложность программирования задач реального времени (рв); — сложность реализации и программирования гетерогенных многопроцессорных структур; — низкая информационная безопасность.	Способен продемонстрировать специализированные знания в области механических и программных компонентов: изготовить и запрограммировать киберфизических систему.	Устное собеседование по теоретическим вопросам и индивидуальные практические задания.
	анализа документов		

для получени	ия
достоверной	
информации о работ	эте
системы или ее част	
(«реверс-	
инжиниринг»),	
работать с полны	ым
стеком технологи	ий
определяющими	
основные задач	ιЧИ
создания ка	сак
специализированны	JX
ВС, так	И
вычислительных	
платформ широког	ου
назначения.	

- 1. Оценочные средства для проведения текущего контроля
- 1.1. Оценочные средства для проведения текущего контроля в _3_ семестре

Перечень тестовых заданий

ПК-4.1

Множественный выбор

- 1. Какие последствия могут возникнуть при неправильном внедрении систем обеспечения информационной безопасности в киберфизические системы?
 - А) Потеря конкурентоспособности
 - Б) Улучшение производительности системы
 - В) Повышение уровня доверия пользователей
- 2. Какие факторы следует учитывать при оценке целесообразности внедрения систем обеспечения информационной безопасности?
- А) Финансовые затраты и потенциальные убытки от нарушений безопасности
 - Б) Только технические возможности системы
 - В) Отношение сотрудников к новым технологиям
- 3. Какие методы анализа рисков используются при оценке целесообразности внедрения систем обеспечения информационной безопасности?
 - А) Методика оценки вероятности возникновения угроз
 - Б) Анализ цветовых схем интерфейса пользователя
 - В) Оценка погодных условий на месте установки системы

ПК-3.3

Короткий ответ

- 4. Что такое киберфизическая система (CPS)?...(**CPS это интегрированные системы,** объединяющие вычислительные и физические компоненты для управления физическими процессами).
- 5. Какие технологии используются для связи между вычислительной и физической частями киберфизической системы?...(Интернет вещей (IoT), беспроводные сети, протоколы связи).
- 6. Какие методы анализа применяются для оптимизации работы киберфизических систем?...(

Метод конечных элементов (FEM), методы оптимизации, метод Монте-Карло).

- 7. Какие принципы проектирования учитываются при создании киберфизических систем?...(Распределенность, время реакции, надежность).
- 8. Какие технологии обеспечивают безопасность киберфизических систем?...(Шифрование данных, аутентификация пользователей, защита от вредоносного программного обеспечения).

ПК-1.3

Короткий ответ

- 9. Что такое систематизация научно-технической информации?...(Это процесс организации и классификации информации для удобного доступа и использования).
- 10. Какие методы систематизации информации используются в области безопасности киберфизических систем?...(Классификация, тематический анализ, организация по источникам).
- 11. Какие средства решения задач используются при систематизации научно-технической информации?...(Информационные системы, базы данных, методы математического моделирования).
- 12. Какие практические методы проведения научных исследований применяются в области безопасности киберфизических систем?...(Эксперименты, наблюдение и измерение, анализ статистических данных).
- 13. Какие технические разработки могут быть использованы для обеспечения безопасности киберфизических систем?...(Разработка криптографических алгоритмов, создание систем мониторинга и детекции аномалий, разработка защищенных протоколов связи).

ПК-1.6

Множественный выбор

- 14. Какой из следующих компонентов является механическим?
 - А) Центральный процессор
 - Б) Датчик движения
 - В) Оперативная память
- 15. Какое взаимодействие между механическими и программными компонентами является ключевым для киберфизических систем?
 - А) Механические компоненты управляют программными компонентами
 - Б) Программные компоненты управляют механическими компонентами
 - В) Оба варианта верны
- 16. Какой из нижеперечисленных примеров является интеграцией механических и программных компонентов в киберфизической системе?
- А) Робот-пылесос, который использует алгоритмы машинного обучения для определения оптимального маршрута
- Б) Система управления складом, которая использует электронные бирки для отслеживания инвентаря
 - В) Все перечисленные варианты

- 17. Какие технологические тренды в области механических компонентов киберфизических систем наиболее перспективны?
 - А) Использование наноматериалов для создания легких и прочных деталей
 - Б) Развитие 3D-печати для быстрого производства запасных частей
 - В) Все перечисленные варианты
- 18. Какое влияние выбора механических и программных компонентов имеет на безопасность киберфизических систем?
 - А) Непосредственного влияния нет
 - Б) Выбор компонентов может повлиять на уязвимости системы
 - В) Все перечисленные варианты

Перечень кейсовых заданий (задания с развернутым ответом)

№ задания	Содержание задания	Коды компетенций
1	Выгоды и преимущества компании от внедрения систем и средств обеспечения информационной безопасности киберфизических систем	ПК-4.1
2	Вызовы и риски внедрения новых систем и средств обеспечения информационной безопасности киберфизических систем, и их минимизация	ПК-4.1
3	Обеспечение внедрения и эксплуатации новых систем и средств обеспечения информационной безопасности киберфизических систем	ПК-4.1
4	Эффективность внедрения современных систем и средств обеспечения информационной безопасности	ПК-4.1
5	Методы и средства убеждения заинтересованных сторон в целесообразности внедрения результатов по вводу в эксплуатацию систем и средств обеспечения информационной безопасности киберфизических систем	ПК-4.1
6	Методы и подходы анализа и решения сложных инженерных задач в процессе проектирования киберфизических систем	ПК-3.3
7	Взаимодействие между программными и аппаратными компонентами при разработке решений для киберфизических систем	ПК-3.3
8	Технологии и инструменты, используемые для моделирования и тестирования инженерных решений в рамках проектирования киберфизических систем	ПК-3.3
9	Выбор оптимального технического решения при проектировании киберфизических систем, учитывая их взаимодействие с физическим окружением	ПК-3.3
10	Управление сложностью и неопределенностью при решении инженерных задач в процессе проектирования	ПК-3.3
11	Методы и средства для систематизации научно-технической информации в области безопасности киберфизических систем	ПК-1.3
12	Методы и средства решения задач в области безопасности киберфизических систем на основе систематизированной информации	ПК-1.3
13	Примеры практического проведения научных исследований в области безопасности киберфизических систем, основанных на систематизации научно-технической информации	ПК-1.3

	Технические разработки, проведенные на основе	ПК-1.3
	систематизированной информации в области безопасности	
14	киберфизических систем и их результаты	
	Эффективность использования систематизированной научно-	ПК-1.3
	технической информации при решении задач в области	
15	безопасности киберфизических систем	
	Механические компоненты киберфизических систем.	ПК-1.6
16	Влияние их выбора на общую производительность системы.	
	Взаимодействие программных компонентов с механическими	ПК-1.6
	компонентами в киберфизических системах, и их влияние на	
17	общую надежность системы.	
	Примеры интеграции механических и программных	ПК-1.6
	компонентов в киберфизических системах, которые привели	
	к улучшению производительности или эффективности	
18	системы	
	Наиболее перспективные для будущего развития	ПК-1.6
	технологические тренды в области механических и	
19	программных компонентов киберфизических систем.	
	Влияние выбора механических и программных компонентов	ПК-1.6
	на безопасность киберфизических систем, и меры	
20	предосторожности при их выборе и интеграции.	

- 2. Оценочные средства для проведения промежуточной аттестации
- 2.1 Оценочные средства для проведения зачета / экзамена / дифференцированного зачета / курсовой работы / курсового проектирования по дисциплине в 3 семестре

Перечень тестовых заданий

ПК-4.1

Множественный выбор

- 1. Какие основные преимущества внедрения систем обеспечения информационной безопасности для киберфизических систем?
 - А) Защита от вредоносных атак
 - Б) Повышение производительности системы
 - В) Улучшение качества физических процессов
- 2. Какие риски могут возникнуть при отсутствии систем обеспечения информационной безопасности в киберфизических системах?
 - А) Утечка конфиденциальной информации
 - Б) Недостаточная эффективность управления физическими процессами
 - В) Повышенное энергопотребление
- 3. Какие методы защиты данных используются в системах обеспечения информационной безопасности киберфизических систем?
 - А) Шифрование данных
 - Б) Методика случайного удаления файлов
 - В) Использование открытых сетей передачи данных
- 4. Какие технологии могут быть внедрены для обеспечения информационной безопасности киберфизических систем?

А) Биометрическая аутентификация

- Б) Применение устаревших операционных систем
- В) Открытый доступ к системам управления
- 5. Какие принципы следует учитывать при внедрении систем обеспечения информационной безопасности в киберфизические системы?

А) Принцип минимальных привилегий

- Б) Принцип открытости доступа ко всей информации
- В) Принцип игнорирования уязвимостей

Короткий ответ

- 6. Что такое киберфизические системы?...(Киберфизические системы это интегрированные системы, объединяющие физические процессы и вычислительные средства).
- 7. В чем заключается целесообразность внедрения систем обеспечения информационной безопасности для киберфизических систем?...(Целесообразность заключается в защите от вредоносных атак, предотвращении утечки конфиденциальной информации и обеспечении надежности системы).
- 8. Какие преимущества могут быть получены от внедрения систем обеспечения информационной безопасности?...(Улучшение репутации компании, защита от потенциальных угроз, повышение уровня доверия пользователей).
- 9. Какие методы защиты данных используются в системах обеспечения информационной безопасности киберфизических систем?...(Шифрование данных, контроль доступа, мониторинг сетевой активности).
- 10. Какие риски могут возникнуть при отсутствии систем обеспечения информационной безопасности в киберфизических системах?...(Утечка конфиденциальной информации, нарушение работы системы, потеря конкурентоспособности).
- 11. Какие принципы следует учитывать при внедрении систем обеспечения информационной безопасности в киберфизические системы?...(Принцип минимальных привилегий, принцип защиты по периметру, принцип постоянного мониторинга).
- 12. Какие методы анализа рисков используются при оценке целесообразности внедрения систем обеспечения информационной безопасности?...(Методика оценки вероятности возникновения угроз, анализ последствий нарушений безопасности, оценка финансовых рисков).
- 13. Какие технологии могут быть внедрены для обеспечения информационной безопасности киберфизических систем?...(Биометрическая аутентификация, системы мониторинга и анализа сетевой активности, средства защиты от DDoS-атак).
- 14. Какие факторы следует учитывать при оценке целесообразности внедрения систем обеспечения информационной безопасности?..(Финансовые затраты и потенциальные убытки от нарушений безопасности, степень важности информации для компании, законодательные требования).
- 15. Какие методы обучения и поддержки персонала используются при внедрении систем обеспечения информационной безопасности?...(Обучающие курсы и тренинги по безопасности информации, проведение семинаров и вебинаров, распространение

ПК-3.3

Короткий ответ

- 1. Какие методы моделирования используются для анализа работы киберфизических систем?....(Моделирование событий, моделирование нагрузок, моделирование времени отклика).
- 2. Какие методы управления применяются в киберфизических системах?...(Пропорциональноинтегрально-дифференциальное управление (PID), методы машинного обучения, адаптивное управление).
- 3. Какие аспекты учитываются при выборе аппаратных компонентов для киберфизических систем?...(Производительность, энергоэффективность, надежность).
- 4. Какие методы тестирования применяются для верификации киберфизических систем?...(Модульное тестирование, интеграционное тестирование, системное тестирование).
- 5. Какие принципы обеспечивают масштабируемость киберфизических систем?...(Распределенность, горизонтальное масштабирование, вертикальное масштабирование).
- 6. Какие методы сбора и обработки данных используются в киберфизических системах?...(Сенсоры и актуаторы, обработка потоков данных (stream processing), базы данных временных рядов (time series databases)).
- 7. Какие вызовы возникают при проектировании киберфизических систем?...(Интеграция различных технологий, обеспечение безопасности, оптимизация производительности).
- 8. Какие методы обеспечивают отказоустойчивость в киберфизических системах?...(Дублирование компонентов, резервирование ресурсов, автоматическое восстановление).
- 9. Какие требования предъявляются к сетевой инфраструктуре для поддержки киберфизических систем?...(Надежность передачи данных, низкая задержка (латентность), высокая пропускная способность).
- 10. Какие инструменты используются для разработки программного обеспечения киберфизических систем?...(Интегрированные среды разработки (IDE), языки программирования для встраиваемых систем, средства моделирования и анализа).

ПК-1.3

Короткий ответ:

- 1. Какие методы классификации информации используются при систематизации научнотехнической информации?...(По уровню конфиденциальности, по типу угроз, по видам кибератак).
- 2. Какие виды информационных систем могут быть использованы для систематизации научно-технической информации?...(Системы управления базами данных (СУБД), системы управления контентом (СМS), системы управления знаниями (КМ)).
- 3. Какие методы математического моделирования могут быть применены для решения задач в области безопасности киберфизических систем?...(Метод конечных элементов (МКЭ),

методы оптимизации, моделирование случайных процессов).

- 4. Какие технические средства мониторинга используются для обеспечения безопасности киберфизических систем?...(Системы видеонаблюдения, датчики контроля доступа, системы обнаружения вторжений (IDS)).
- 5. Какие методы анализа статистических данных применяются для оценки уровня угроз в области безопасности киберфизических систем?...(Методы временных рядов, методы корреляционного анализа, методы машинного обучения).
- 6. Какие методы экспериментов могут быть использованы для научных исследований в области безопасности киберфизических систем?...(Лабораторные эксперименты, полевые эксперименты, симуляция моделей).
- 7. Какие методы организации по источникам информации используются при систематизации научно-технической информации?...(По авторам, по издательствам, по дате публикации).
- 8. Какие методы машинного обучения могут быть применены для анализа статистических данных в области безопасности киберфизических систем?...(Деревья решений, метод опорных векторов, нейронные сети).
- 9. Какие средства визуализации данных используются для отображения результатов анализа статистической информации?...(Графики, диаграммы, географические карты).
- 10. Какие методы оптимизации могут быть применены для повышения эффективности систем безопасности киберфизических систем?...(Методы генетических алгоритмов, методы линейного программирования, методы имитации отжига).

ПК-1.6

Множественный выбор:

- 1. Какой из нижеперечисленных компонентов является программным?
 - А) Двигатель
 - Б) Алгоритм управления роботом
 - В) Датчик температуры
- 2. Какие механические компоненты обычно используются в киберфизических системах?
 - А) Электродвигатели
 - Б) Гидравлические цилиндры
 - В) Все перечисленные варианты
- 3. Какая из нижеперечисленных функций относится к программным компонентам киберфизических систем?
 - А) Преобразование электрического сигнала в механическое движение
 - Б) Управление траекторией движения робота
 - В) Все перечисленные варианты
- 4. Какой из нижеперечисленных примеров является интеграцией механических и программных компонентов в киберфизической системе?
 - А) Автомобиль с антиблокировочной тормозной системой (ABS)
 - Б) Кофейный автомат с автоматическим выбором напитка
 - В) Все перечисленные варианты
- 5. Какие технологические тренды в области программных компонентов киберфизических

систем наиболее перспективны?

- А) Использование искусственного интеллекта для оптимизации процессов управления
- Б) Разработка специализированных операционных систем для киберфизических систем
- В) Все перечисленные варианты

Короткий ответ

- 6. Что такое механические компоненты в киберфизических системах?...(Это физические устройства, которые обеспечивают механическое движение или изменение состояния).
- 7. Какие компоненты управляют механическими устройствами в киберфизических системах?...(Программные компоненты, такие как алгоритмы управления и системы автоматизации).
- 8. Какие примеры механических компонентов можно найти в киберфизических системах?...(Двигатели, датчики, клапаны, гидравлические и пневматические системы).
- 9. Что представляют собой программные компоненты в киберфизических системах?...(Это программное обеспечение, которое управляет работой механических компонентов и обрабатывает данные).
- 10. Какие задачи выполняют программные компоненты в киберфизических системах?...(Управление движением, сбор и анализ данных, оптимизация процессов и принятие решений).
- 11. Какие технологии используются для создания механических компонентов в киберфизических системах?...(3D-печать, CNC-обработка, использование новых материалов (например, нанотехнологии)).
- 12. Какие языки программирования чаще всего применяются для разработки программных компонентов киберфизических систем?...(C/C++, Python, Java, MATLAB/Simulink).
- 13. Какие примеры киберфизических систем сочетают в себе механические и программные компоненты?...(Автоматизированные производственные линии, роботы-манипуляторы, автономные транспортные средства).
- 14. Какие преимущества применения киберфизических систем совместно с механическими и программными компонентами?...(Увеличение производительности, снижение затрат, повышение безопасности и надежности).
- 15. Какие вызовы и проблемы могут возникнуть при интеграции механических и программных компонентов в киберфизических системах?...(Сложность согласования работы различных компонентов, уязвимости кибербезопасности, необходимость постоянной оптимизации).

№ задания	Содержание задания	Коды компетенций
1	Перечислите основные структурные части КФС.	ПК-4.1
2.	В чем отличия "узкой" и "широкой" трактовки понятия КФС?	ПК-4.1
2	Перечислите основные факторы появления появления КФС как	ПК-4.1
4	нового класса систем. Опишите связь понятий Интернета вещей и КФС.	ПК-4.1

5	Дайте характеристику актуальных проблем проектирования КФС.	ПК-4.1
6	Как принцип Копеца характеризует соотношение системы и ее моделей?	ПК-4.1
7	Почему важно закладывать высокую степень адаптивности в современные системы автоматики?	ПК-4.1
8	Перечислите направления компьютинга в соответствии с Computing Curricula 2020.	ПК-4.1
	В каких областях знаний должен иметь подготовку специалист по проектированию КФС?	ПК-4.1
10	Назначение стандарта Essence.	ПК-3.3
11	Общее описание метода ARCADIA.	ПК-3.3
12	Перечислите и охарактеризуйте составные части ядра Essence.	ПК-3.3
13	Что такое альфа ядра Essence? Перечислите стандартные альфы ядра.	ПК-3.3
14	Опишите графическую нотацию изображения «альф» и «суб-альф» ядра Essence.	ПК-3.3
15	Какие области деятельности определяет ядро Essence?	ПК-3.3
16	Какие компетенции определяет ядро Essence? Перечислите и охарактеризуйте уровни владения компетенциями.	ПК-1.3, ПК-1.6
17	Перечислите основные элементы языка Essence и связи между ними.	ПК-1.3, ПК-1.6
18	Опишите модификации Essence для системной инженерии.	ПК-1.3, ПК-1.6
19	Какую последовательность шагов определяет метод ARCADIA.	ПК-1.3, ПК-1.6
20	Какие компоненты входят в состав системное ПО для обеспечения безопасного и надежного функционирования прикладной программы.	ПК-1.3, ПК-1.6
21	Принцип актуализации вычислительного процесса в проектировании BeC.	ПК-1.3, ПК-1.6
22	Объяснить модель актуализации вычислительного процесса.	ПК-1.3, ПК-1.6
23	Объяснить суть трансляторов в модели актуализации вычислительного процесса.	ПК-1.3, ПК-1.6
	Что из себя представляют фазы актуализации вычислительного процесса ВСС.	ПК-1.3, ПК-1.6